高中学习网

当前位置:首页 > 数学 > 知识点 > 资料详情

高中数学知识点:函数

编辑:管理员  时间:2023-02-27 13:01:53  浏览:2926
函数 知识点 一、函数的定义域的常用求法:1、分式的分母不等于零; 2、偶次方根的被开方数大于等于零; 3、对数的真数大于零; 4、指数函数和对数函数的底数大于零且不等于1;5、三角...

函数

知识点

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tan_中_≠kπ+π/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(_),g(_)均为某区间上的增(减)函数,则f(_)+g(_)在这个区间上也为增(减)函数。

2、若f(_)为增(减)函数,则-f(_)为减(增)函数。

3、若f(_)与g(_)的单调性相同,则f[g(_)]是增函数;若f(_)与g(_)的单调性不同,则f[g(_)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在_=0处有定义,则f(0)=0,如果一个函数y=f(_)既是奇函数又是偶函数,则f(_)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(_)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

评论区

共 0 条评论
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~

【随机内容】